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ARTICLE INFO ABSTRACT

Keywords: In New York City, the situation of COVID-19 is so serious that it has caused hundreds of thousands of people
COVID-19 to be infected due to its strong infectivity. The desired effect of wearing masks by the public is not ideal,
Face mask

though increasingly recommended by the WHO. In order to reveal the potential effect of mask use, we posed
a dynamical model with the effective coverage of wearing face masks to assess the impact of mask use on the
COVID-19 transmission. We obtained the basic reproduction number R, which determined the global dynamics.
According to the implement of policies in New York City, we divided the transmission of COVID-19 in three
stages. Based on mathematical model and data, we obtain the mean value R, = 1.822 in the first stage of New
York City, while R, = 0.6483 in the second stage due to that the US Centers for Disease Control and Prevention
(CDC) recommended the public wear masks on April 3, 2020, R, = 1.024 in the third stage after reopening. It
was found that if the effective coverage rate of mask use a exceed a certain value «, = 0.182, COVID-19 can
be well controlled in the second stage of New York City. Additionally, when the effective coverage of masks
reaches a certain level « = 0.5, the benefits are not obvious with the increased coverage rate compared to
the cost of medical resources. Moreover, if the effective coverage of mask use in public reaches 20% in the
first stage, then the cumulative confirmed cases will be reduced about 50% by 03 April, 2020. Our results
demonstrated a new insight on the effect of mask use in controlling the transmission of COVID-19.

Basic reproduction number
Parameter estimation
Markov chain

Sensitivity analysis

Introduction country. However, the endemic is still very grim of abroad, such as

USA, Europe, Brazil, India.

Coronaviruses can cause disease pandemic, which are single-
stranded, positive RNA viruses belonging to the family of Coronaviri-
dae [1]. They can affect mammals, causing commonly mild infectious
disease, occasionally leading to severe outbreaks clusters, such as the
SARS virus, and the MERS virus [2]. COVID-19 is an infectious disease
caused by a newly discovered coronavirus which is distinct from them.
The COVID-19 virus can be transmitted by three main routes including
direct transmission, contact transmission and aerosol [3]. Due to the
absence of specific COVID-19 therapeutic and effective vaccine, making
it very difficult to control the transmission [4]. To prevent the infection
and further transmission of COVID-19, a range of nonpharmaceutical
interventions has been used to control the epidemic [5]. For the
moment, the spread of the epidemic was basically controlled and life
quickly returned to normal in China through the efforts of the whole

The United States is one of the worst affected countries by COVID-
19 in the world. The New York City (NYC), as the most prosperous
city of the United States, the population density is very high and the
communication between people is relatively frequent. Therefore, the
New York City metropolitan area quickly became the hardest-hit region
of the COVID-19 pandemic following by the first confirmed cases on
March 2, 2020 [6]. In the early stage of the COVID-19 epidemic, mask
use in public has been controversial, few people in the public wear
masks in the liberal and democratic society of the United States, and
people who wear masks are regarded as disseminators of the virus.
Some people are afraid of wearing masks for fear of opposition. In
addition, due to the shortage of medical resources, especially in the
supply of masks, there are not enough masks for ordinary people,
the percentage of people wearing masks was very low. Hence, the
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Fig. 1. Time series diagram of COVID-19 in New York City [6,8,9].

confirmed cases of COVID-19 in New York City increased rapidly, and
then more than 60,000 cases have been confirmed in just one month
followed by the first confirmed case [6].

Although on April 3, 2020, the US Centers for Disease Control and
Prevention (CDC) recommended the public wear cloth masks [7], the
proportion of people wearing masks in public space is still relatively
small in New York City. As a result, the accumulated confirmed cases
of COVID-19 quickly swelled to hundreds of thousands in few months.
With the relieving of lockdown in New York City, the first phase of the
restart is on June 8, and the second phase is on June 22 [8]. People
gradually returned to normal work, then the contacts between people
are relatively frequent. The time series diagram of COVID-19 and recent
opening and closing policy decisions in New York City are shown in
Fig. 1. If people do not take personal protection, this will increase the
risk of transmission. Instead, the public use of masks is very common in
Asian countries, which has rich experience in dealing with COVID-19
epidemic [7].

The protective effect of wearing masks has been controversial,
despite experimental result demonstrates face masks can effectively
prevent the spread of droplets and aerosols [10]. Some researches
revealed that face masks could be a useful intervention strategy. If N95
respirators have 20% effect on reducing the infectivity, to reduce the
number of influenza A cases by 20%, there are 10% people would have
to wear them [11]. Masks have also been used as a way to prevent
the transmission by asymptomatic or clinically undetected carriers,
who may be a major driver of the spread of COVID-19 [12,13]. The
widespread use of masks is a striking feature of Taiwan’s relative
success in responding to COVID-19 [14]. Case control data for 2003
SARS epidemic showed that use of masks in public places has a strong
protective value for community members [15,16]. Due to the shortage
of medical resources, especially in the supply of masks, masks are
mainly provided to some doctors and patients, not to ordinary people
in some country. Therefore, people’s behavior change during infec-
tious disease outbreaks have significant influence in controlling the
disease spread, then investigating the correlation between the coverage
of wearing masks and the infection dynamics in NYC becomes very
important during the COVID-19 outbreak. There are many researches
about the transmission of COVID-19 epidemic in NYC. Harrichandra
et al. [17] indicated that appropriate outdoor airflow rates, the use
of face masks and social distance have the potential to reduce the
risk of COVID-19 transmission in NYC nail salons. Alagoz et al. [18]

characterized timing of implementing and relaxing social distancing
intervention has crucial effects on the number of COVID-19 cases in
NYC. Wilder et al. [19] adopted an individual-level model for COVID-
19 transmission to explain the location-dependent distributions of age,
family structure, and comorbidities in NYC.

Dynamical modeling can better help understand the transmission
mechanism of diseases spread as well as COVID-19, which can dynam-
ically predict the future transmission trend according to the current
information. Steffen et al. used a dynamical model to characterize the
effect of face masks about the transmission of COVID-19 in New York
state before April 3, 2020, and revealed use of face masks by the general
public is potentially of high value in curtailing community transmission
and the burden of the pandemic [7]. Tang et al. devised a SEIR model
on the estimation of the transmission risk of COVID-19 and showed the
effectiveness of control strategy by intensive contact tracing followed
by quarantine and isolation [20]. Sun et al. presented a dynamical
model to show the propagation of COVID-19 in Wuhan and the effects
of lockdown and medical resources [21]. To our knowledge there are
few studies using dynamic model to discuss the effects of mask use
about the transmission of COVID-19 in NYC.

In order to investigate the transmission mechanism of COVID-19
and the influence of the coverage of mask use in NYC, we proposed
a deterministic differential dynamical model and explore the corre-
sponding global dynamics motivated by the above ideas. Moreover, we
estimate the key parameter values about the coverage of mask use and
the transmission rate by extensive Markov-chain Monte-Carlo simula-
tions. Next, sensitivity analysis was carried out to identify parameters
affecting the disease transmission most. We explore the impact between
the coverage of mask use by public and the disease transmission.
Finally, some conclusion and discussion are given.

Dynamical modeling of COVID-19 transmission in New York City

Masks use is useful for both preventing illness in healthy people and
asymptomatic transmission [7]. In order to investigate the transmission
mechanism and the influence of the coverage about mask use of COVID-
19 in NYC, we pose a deterministic differential dynamical model with
the coverage rate of mask use. We divide the total population as
six groups: Susceptible (), Exposed (E), Asymptomatic infected (A),
Symptomatic infected (I), Diagnosed and treated (Q) and Removed
(R)(Here, removed group includes recovered and death populations).
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Fig. 2. Transmission diagram of COVID-19 in New York city.
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Fig. 3. (a) Simulation results for parameter § and « of Markov chain with 10000 sample realizations. (b) The histogram of parameter g and « in the first stage.
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To better investigate the COVID-19 model, we suppose that the asymp-
tomatic infected (A) and symptomatic infected (1) populations all have
ability to infect the susceptible populations (.5), but the exposed (E)
cannot. We also assume the people diagnosed and treated in hospital
(Q) are not exposed to the general population and do not contribute
to infection rates. The transformation block diagram is in Fig. 2 and
the parameters are described in Table 1. Consequently, the differential

SEAIQR model is as follows:

ds@w _ . pll-n) ~

dt 1+aSS(l+5A) ws.

dE(®t) _ p(l=n) _

w=(l—p)6E—(ﬂ+K+€)A,

d;ht) M
d—(t=p6E+KA—(/4+(]+J/)I,

do(t

0 — g1 -+ wo.

%}@=§A+y1+mQ—uR.
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Fig. 5. (a) Simulation results for parameter # of Markov chain with 10000 sample realizations in the third stage. (b) The histogram of parameter f in the third stage.
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referred to the web version of this article.)

In the model, parameter « is the effective coverage rate of mask use
by the public, which is equal to the coverage rate of mask use products
the efficacy of mask. When parameter a« = 0, model is equivalent to the
bilinear incidence, such case can account for the intense competition
for medical resources due to the limited medical resources in the early
stage of the epidemic, which means there is no masks supplied to
the ordinary people. Since the proportion of susceptible individuals is

(For interpretation of the references to color in this figure legend, the reader is

relative large, « = 1 means all susceptible individuals wear masks under
the condition that the supply of masks is very sufficient and masks

pa—n)

provide 100% protection, is approximately equal to zero as S

1
is sufficiently large, which can account for all susceptible wear masks,
and there is small probability to be infected, where 0 < @ < 1 means

partial susceptible individuals wear masks.
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Table 1
Definitions of frequently used variables and parameters of model (1).
Variables Description
S(1) The susceptible individuals at time t
E@) The exposed individuals at time t
A1) The asymptomatic infected individuals at time t
1) The symptomatic infected individuals at time t
o(r) The diagnosed and treated individuals via the medical care at time t
R(1) The removed individuals at time t
B The transmission rate of infected individuals
n The rate of keeping social distance
a The effective coverage rate of wearing masks by the public
u Natural death rate
) Relative transmission probability of A(r) compared with I(r)
c Progression rate of exposed individuals to infectives
P Progression rate from exposed individuals to symptomatic infectives
K Progression rate from A(t) to I(r)
& Recovery rate of asymptomatic infected individuals
q Progression rate from I(r) to O(t)
7 Recovery rate of symptomatic infected individuals
m Recovery rate of hospitalized individuals

It is easy to show that all solutions of system (1) with positive initial
conditions are defined on [0, +c0) and remain positive for all > 0. We

can verify the domain
Q= {(S,E,A,I,Q,R)eRi |S+E+A+I+Q+Rsé}.
U

is a compact and positively invariant set of model (1), which implies

that S(t), E(t), A(t), I1(t), O(t),R(t) are bounded in the invariant set Q.

Basic reproduction number and global dynamics
Basic reproduction number

Model (1) always has a disease-free equilibrium P° = (5°,0,0,0,0,0)
for any parameter values, where S° = é According to the approach of

. . M, . .
next generation matrix [22,23], the associated next generation matrices
are given by

0 B —m3S°® B —mS°
F = 1+ aSO 14 aS°
0 0 0 ’
0 0 0
H+o 0 0
V=|-1-po p+r+¢ 0
—poc —K H+qg+y
The inverse of V equals to
1 0 0
H+o
plo (1 -=p) 1 0
m+o)pu+x+9 pu+rx+é
po(u+x+&)+xk(—po K 1

(H+o)pu+x+Ep+q+y) (W+rk+Ou+q+y) p+qty

The basic reproduction number R, of model (1) is defined by the
spectral radius of FV~!, namely,

R. = Bl —n)S° (1 - p)od
7 14aS0 [(uto)ut+E+n)
(1 - p)ok po

+(u+6)(u+K+5)(u+q+y)+(M+6)(u+q+y) '
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Strength number

In the field of epidemiology, the basic reproduction number has
always been an important threshold parameter for measuring whether
a disease can spread in a population. As the approach in the above, we
can seek out two matrices F and V, hence det(FV~! — AI) = 0 can be
derived the basic reproduction number. The matrix F can be received
by deducing the nonlinear part of the newly infected items. Here,

p(—n pa—-nS
ﬁ(1+ SS(I+5A)) T+aS S ’

s —n) A —=n)sS
6_A<1+aSS(I+5A)) 1+aS

) _ 9 (PA-mSy _
67(1+aSS(I+6A)>_aI( 1+ as )‘0’

s —n) P —n)sSy _
ﬁ(uassu ‘M)) 01( 1+as )_0'

Therefore, the following holds at the disease-free equilibrium

0 0 0
Fya=l0 o0 of.
0 0 0
Furthermore, det(F,¥~! — AI) = 0 can contribute to 4, = 0,

which means that the transmission will not exist a renewal process, and
hence there will have a single magnitude and extinct. A, > 0 suggests
that there exists enough strength that will result in renewal process,
therefore the transmission will have more than one wave [24].

Global dynamic of disease-free equilibrium

Theorem 1. When R, < 1, the disease-free equilibrium P° =
(59,0,0,0,0,0) of model (1) is globally asymptotically stable.

Proof. The linearized matrix of model (1) at the disease-free equilib-
rium point P? is

Bl —n)sS° B —n)S°
—u 0 - - 0
1+ ocSOO 1+ aSOO
1—=n)oS 1-n)S
0 —(u+o) B —n) B —n) 0
J= 1+aS0 1+ aSO
10 (1-po —(u+x+¢) 0 0
0 po K —(u+q+vy) 0 0
0 0 0 q —(m+ ) 0
0 0 3 Y m —u
Obviously, matrix J has three eigenvalues 4, = —u, 4, = —(m + )
and A; = —pu, respectively. We only need to investigate the following
matrix
pU-mss®  pU—mS°
—(u+0) o o
J, = 1+ aS 1+asS
! (1-po —(u+x+9 0
po K —(u+q+y)

The characteristic equation of J is

A —n)S” n)S°

1-
14 aSO {( P

Xol(A+u+q+7y)s+k]

A+pu+o)A+pu+x+EA+u+q+y) =

+po(A+pu+k+¢&) }

A —n)S°

Denote Ry = Ry, + Ryp + Ry3, D = ——————, where
0 01 02 03 d+asHn+0)
D(1 — p)oé D(1 — p)ox Dpoc
Ryy=———F—, Rpp= , Ryz= .
u+é+x (M+x+u+q+y) Ht+qg+y

Substituting Ry, Ry, Ry; into above characteristic equation yields
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A A A A
(s + ) G ) =P
uto utr+¢ utq+y utq+y
A
——— +R,.
03/4+K+§ 0
Suppose that the above equation has a root 4, = x + iy with x > 0.
When R, < 1, it is easy to prove that

‘Mid+1‘>1’ ‘(ﬂ+i+§+l>(,u+z+y +1>‘

R0|.

>‘R01 A + Ry3 A +
utqg+y utrk+é

It follows that

‘(yio’+1)(ﬂ+i+§+l>(/4+2+y+l)‘

> (Rm

A
+ Ry|,
Byt +e 0)

which yields contradiction. Hence, the eigenvalues of Jacobian matrix
J all have negative real parts. Hence, the disease-free equilibrium P°
is locally asymptotically stable by the Hurwitz criterion [25].

To investigate the global stability of the equilibrium P°, we can
construct the Lyapunov function as follows:

A
+
HEtqg+y

V()= E@)+ b A@) + byI(1),

g0
where b, = Hto Bl —n)S®pc b =
(d=po (I +aS%(u+q+7)1-po

_ g0
M. The derivative of V(¢) along the system (1) sat-
W+ g+ +aS%

isfies

v _ dE [ uto AU = mS°po A

dt dt  L(-po (A+aSYu+q+y)1-po

_ pa-ms® ar
(u+q+y)(1+aSY dt
= ﬁ(11+ DS 4 54) = (4 +0)E
Hto B —mS°po ]
(I-po  A+aSYu+q+7){1-po
[(1=p)oE - (u+x+&A]
B —n)S°
(u+q+7)(1+aS%
{ B(1—n)sS° B(1 — n)kS°
1+ aSO (H+q+y)(A+aSY
B AL = n)psS° ]}
(u+ g+ 71 +aS%1 - p)o
_ M+K+§{ﬂ(1—n)50[(1—17)05
(1-ppe 14aS0 Llu+é+x
po
ﬂ+q+y] (”_HT)}A
(M+c+Eu+o)

When R, < 1, we can obtain that ‘Z—V < 0. It is obvious that Z—It/ =0
if and only if S = S°, E=0,A=0,1 =0, Q0 =0, R = 0. Based on
the LaSalle’s Invariance Principle [26], we can conclude P° is globally
asymptotically stable.

The global stability of disease-free equilibrium point is obtained by
the sign of the first derivative of the Lyapunov function. Next, we will
discuss the curvature by the sign of second derivative of the Lyapunov
function.

[poE+xkA—(u+q+y)I]

H+o
(1 =ppo

IA

—rk+d)|

(1 - p)ox
(M+x+u+q+y)

dv d (dE dA dI
ar dt(dt oy +b2dt)
pl—mU +64) ,, pUA-n)S ’ ! ’
= S I'+5A") - E
G+asy > T dgas T HOO 7Y
+b[(1 = p)oE —(u+k+ A"
+by[poE' + kA" —(u+q+I']
Bl =S

= [poE+KkA—(u+q+y)I
(1+aS)[pU KA—(u+q+y)
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+6(1 = p)oE —6(u+ k + E)A]

BA-—mU +6A) 1  pA-—nS _

T U tasy [A (Ttas) [+ ”S]
s —nS

—(/4+o‘)[(1 )(I+5A)—(M+6)E]

s
bl{(l—p)a[ﬁ((l ) (I+5A)—(/A+G)E]
—(/4+K+§)[(1—p)GE—(ﬂ+K+§)A]}

p—mS

+b2{p s (I+5A)—po'(/4+0')E]
+x[(1 = P)oE — (4 + k + E)A]
—(/4+q+7)[p0E+KA—(/4+q+7)I]}.

For convenience, we can put together positive and negative part and
rewrite the above equality as follows

av
e =0, -2,

2
Therefore, if 2, > Q,, v

i > 0 means that the Lyapunov function
t

2
V has a local minimum value. If Q; < £,, dd—lz/ < 0 suggests that

the Lyapunzov function ¥ has a local maximum value. Otherwise, if
2, =9, % = 0 implies that there is a disease-free equilibrium point.

The threshold result in Theorem 1 implies that the number of the
infected population will gradually become lower and lower if R, < 1.
If Ry > 1, the solutions start from nearly to P° are far from P°. This
implies that P? is unstable. When R, > 1, the instability of P® implies
uniform persistence of model (1).

Theorem 2. When R, > 1, the disease will keep persistent in the
population, then the model (1) is uniformly persistent.

Proof. Since the equation

s
=2 = A-usS, 2
I U 2

has a positive equilibrium S° = é, which is globally attractive.

U
When R, > 1, we consider the following perturbed system
as _ . B =md +6)S

uS —=0

dr 1+aS &)

Due to the equilibrium S° = A globally attractive, hence, we can
choose a small § > 0 such that the system exists a unique positive
equilibrium S°(9), which is globally asymptotically stable. Since S°(9)
is a continuous function of § and

is a monotonically increasing
o
function. Conse% uently, there exists an enough small positive number
579 S0

1+aS%0) ~ 1+as®
We claim that limsup,_, . (E(1), A(r), I(1)) > 6. Otherwise, we suppose

the contrary, there exists small enough number { > 0 ({ < 6) and
positive number T > 0 such that E(r) < {, A@®) < ¢, 1) < ¢ for all
t > T. From model (1), we can obtain

e such that

£>A_,,S_w2,1_ﬂs_9

pA =mA +6)S
dr = 1+asS ‘

1+aS

Due to the equilibrium 5°(9) of inequality (3) is globally attractive, and
SO(G) S SO

— . Using the comparison principle, there exists

I+aS%0) 1+ aS°
- S(1) S0
a positive number 7| > T > 0, such that ———— —¢ for all
T 1+aS® 1+aSO
t>T.
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For any small number ¢ > 0, when 7 > T}, we can obtain that

E S0
— Zﬁ(l—n)(m —6)(1+5A)—(/4+0')E,
‘fi—" = (1= poE — (u+ 5 + A,
Z—{ =pcE+KxkA—(u+q+y)l.

We consider the following auxiliary system

dE, =ﬁ(1—r/)<——£)([ +5A) = (u+0)E
dt 1 1 1 H 1»

aS0
dA
— = =poE ~ (K +OA, “
dI,
W =poE| + kA —(u+q+y).

The coefficient matrix of system (4) is

S0
N e =g e)s PL-m(1eg )
|4 =pe —(u+x+8) 0 ’
po K —(u+q+y)

When R, > 1, the coefficient matrix J(0) at least exists one positive
eigenvalue, namely p(J(0)) > 0. Since p(J(0)) > 0 is continuous
about small . Hence, there exists a sufficiently small £ > 0 satisfying
p(J(¢)) > 0. This implies that the solutions of auxiliary system (4) satisfy
E(1),A(@),I,(f) > 400 ast — +oo. Using the comparison theorem,
we conclude lim,_, E(f) = oo, lim,, A(t) = oo, lim,_ I(f) = oo.
Which contracts with previous hypothesis, this implies the conclusion
limsup,_, . (E(1), A(t), I(t)) > 6 holds true.
Define the sets

X=Q={(S,E,A,I,Q,R)eRi |S+E+A+1+Q+R54},
u

={(S,E, A I,OLREX|E>0, A>0, I >0}, 0X,=X\X,.

Obviously, X is a compact and positive invariant set of model (1). Then
X, is uniformly and ultimately bounded, X, is closed with respect to
X. As a result, model (1) is compact and point dissipative.

Let

My = {(S,E,A,I,0,R) € 0X, | (S(1), E®), A®), I(1), O(r), R(1)) € 0X,,
vt > 0}.

We can prove that M; = { (5,0,0,0,0,0) | S#) > 0 }. Due to the
definition of M,, we can obtain {(.5,0,0,0,0,0) € 0X,, | S) >0} C M,.
Suppose (5(0), E(0), A(0), 1(0), 0(0), R(0))
€ M,, we can conclude E(r) = 0, A(t) = 0, I(r) = 0 for all + > 0. If not,
at least one of E(t), A(t), I() is positive. Without loss of generality, we
assume there exists 7, > 0 such that E(r) > 0, A(t) =0, I(r) =0 for any
> 1.

Form the equations of model (1), we can obtain the following
equations:

M—(1— pP)0E —(u+x+EA=(-pocE,
dt
%=p6E+KA—(u+q+y)I=p0'E.

There exists a small enough number w > 0 such that A(r) >0, I() >0
when t, < t < t; + w. Namely, the solution (S(r), E(t), A(t), I(t), O(1),
R(1)) ¢ 0X,. This contradiction implies that (5(0), E(0), A(0), 1(0), O(0),
R(©0)) € M, only if E0) = 0, A(0) = 0, I(0) = 0, that is M, C
{(5,0,0,0,0,0) € dX, | S() > 0}. Hence, M, = {(S,0,0,0,0,0) € 0X, |
S(@) > 0}.

When R, > 1, the only disease-free equilibrium point P? is unstable
in 0X,. By using Lemma 5.9 in research [27], we claim that no subset
of P? forms a cycle in X,,. P? is an isolated invariant set in X. Namely
WS(P% N X, = @. Every trajectory of set M, converges to P’ and P° is
aperiodic in M,. From Theorem 1.3.1 and Remark 1.3.1 in Ref. [28],
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we can conclude that the solutions of model (1) are uniformly persistent
with respect to (X, dX).

The stability of the endemic equilibrium

If Ry > 1, it can be demonstrated that model (1) may admit a unique
endemic equilibrium P*(S*, E*, A*, I'*, 0*, R*), which satisfies that

A —1n)
1+aS
A = S*(I*+5A*)—(/4+0')E*
1+ aS*
(1=poE*—(u+x+EA* =0,
PoE* +kA* —(u+q+y)I* =0,
qI* — (m+ wQ* =0,
EA* +yI* + mQ* — uR* = 0.

A -

S*I* + 6A*) — uS* =0,

By straightforward calculations, one can have that
0
A- )
. 50 . a(Ry — 1S + R,
T a(Ry—DSO+ R, H+o '
poE* + Kk A*
Mgty 50
U-—Le 1 po
a(Ry — 1)S0 + R,
(u+o)u+rx+8)
yI* + EA* + mO*
—

L -

ql”
m+p’

A* = , OF =

R* =

Theorem 3. Assume that R, > 1, then the endemic equilibrium P*(S*, E*,
A*, T*,0%, R*) of model (1) is globally asymptotically stable.

Proof. The linearized matrix of model (1) at the endemic equilibrium
point P* is

X —u 0 -Ys -y 0 0
X —(u+o0) Yé Y 0 0
7 = 0 (1-po —(u+x+¢&) 0 0 0
L v K ~(u+q+7) 0 0
0 0 0 q —(m+ ) 0
0 0 & y m —u
where we denote X = w and Y = M
(1+aS*)? 1+ aS*

The characteristic equation of J, is
A+wA+m+ WA+ X+ wA+u+o)A+u+c+EA+u+qg+y)
FXYZ -Y(O+ X +wZ] =

where Z = A+ u+q+y)1l —pod+po(A+u+x+&+ (1 - pok.
It is obvious that the above characteristic equation has two negative
real root —u, —m — pu and other roots are determined by the following
equation

A+ X+wA+u+o)A+pu+x+EA+u+q+y)=A+wYZ. 5)

Noting that

po (1 - pox (1 - p)oé
Y{ }=u+(7,
ut+a+y (Wtx+OHwu+qg+y) p+é+x
Denote that Ry, L Ry =
(M+U)(l4+q+}’)
Y(1 - p)ox — Y(1 = p)obd

03 = . Then, R01 +R02 +

Ut u+k+Ou+a+y) (n+o)u+é+x)
Rog = 1. Substituting R01 , Roz’ Ro% into Eq. (5) yields

ﬂia+l>(/4+;+y+l)<y+i+é+l)

ARy, ARy3
oy Ma ),
utqg+y u+trx+é

(/1+X+;4)(

=G+
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Provided that Eq. (5) has a root 4, = a + ib with a > 0, we can obtain

(L+1(> L A+ X +ul> |2+ ul
H+O

iRy, ARy;
‘ A +1H A +1|>| o4 03 +1’.
u+rx+é utaqg+y utg+y pu+trx+é
Therefore, we can conclude that

|,1+X+;4||ﬂi 1”M+i+§+ “’u+z+y+1‘

ARy, . iRy |
u+g+y pt+r+é T

> |/1+/4|‘

which contradicts to Eq. (5). Namely, all roots of Eq. (5) have neg-
ative real parts. P* is locally asymptotically stable by the Hurwitz
criterion [25].

To investigate the globally asymptotically stable of endemic equi-
librium P*, we suppose the following Lyapunov function as

U@ =Vi()+c1 VL) + ¢, V3(0),
— *

whereas V| = S‘i de+E—E* —E*ln£,1/2 =A-A" -

F(x) | E*

A*In — A ,V3=1-TI*-TI*In L*, and F(x) = pa - x Constants ¢; and

¢, will be determined later. Calculating the éerlvatlve of V;, i=1,2,3,

along positive solutions of model (1) yields:

dav, F(S*)\dS E*\dE

—1 = (1- 24 (1-

di ( F(S) Yo+ (-F)%

)[ S* + F(S*)I* + 6A4*) — uS — F(S)I + 6 4)]

( )
( - E—) [F(S)(l +6A) = F(S*)I* + 5A*)§]
S5%)

(i . (1 FS)I
- ( F(S )[ (ST =S+ FSHI (1 F(S*)I*)
. F(S)5A
+F(ST8A" (l F(S*)(SA*)]
F(S)I E
( )[F(S o (F(S*)I* E)
. F(S)5A _ E
+F(57)547 (F(S*)éA* £ )]
< F(SHI [2— E_EFSI_FSYH 1 ]
E*  EF(SHI*  F(S)
., E _ E'F(SHA _ F(S*) A
+F(ST8A [2 B EFGSHAT | F©S) T A*]
- F(S*)l*[l—F(S* w8 FSD L ETESIT
F(S) F(S) F(S) EF(SHI*
E*F(S)I E*FS)I E I
+1In —In -+ =
EF(SHI*  TEFSHI* EF I
+F(S*)5A*[1— PGS i ESD | ESD | ETFDH4
F(S) F(S) F(S) EF(SHA"
E*F(S)A E*F(S)A E A]
n —lIn - — + =
EF(SHA*  TEFSHA*  EF | A*
< F(SYI (_E_+IHF+F_1 F)
* E L E. A _ A
FE(S)6A* (—E +ln o+ - )
P2 - (1= Ao pror - LZ2E ]
o AN E A
= (a-por(1- 5 ) (5 - 1)
S| _AE _AE_AE E A
= (=pok (1 AE TN TN IE T A*)
./ E E A A
< (I—P)GE (—*—IHE—E‘FIDE)
dVv; _ I* po E* + Kk A*
= (=)o eea = ]

- (=)l (- ) e (- )]
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* *
=PGE*(l-’7)(%-%)””(1-’7)(%-%)
1 E E
< E*(-- mL 4+ £y —)
< po ]+nl*+E* nE*
1 1 A A
+ A*(——+1 -,
T AT
We choose
F(S*)I*
F(S*)EA*+—( ) KA*
.= PoE* + kA* _ F(SHI*
e (1—-poE* 2 po E* + Kk A*

Hence, according to the above inequalities, direct calculation shows
that
F(S*)I*
F(S*)6A* + —————— Kk A*
aww _ dv 59 OB kA AV, F(SHI* dV,
dt — dt (1 - p)oE* dt  poE* +kA* dt
‘ E E 1 1
F(S*)I*<—E— +1HE + F —IHF>
A A
F(S* 5A*(—— h=+4 —)
+F(S™) Z + n= — + =
F * *
—(S )} KA*
poE* + k A*
(1-p}cE*
E A A

x(1=poE* (£ ~In— - 2+ 2.
F(S)I*

1 E E )
poE* + kA*

« 1
[pGE (—F"FIHF‘F—*—IH—*
1 A A
+KA*(—I_ +ln_+;—l F)]
= 0.

IA

F(S*)6A* +

+

Thus, it follows from the inequality of arithmetic means that % <0,

and v _ 0 holding if and only if S = S*, E = E*, A= A*, [ = I x,
0= Q*t, R = R*. It can be proved that M = { P*} is the largest invariant
subset of { (S(1), E(t), A®®), I(1), Q(t), R(t)) : v = O}. Consequently,
we obtain that P* is the globally asymptoticafly stable from LaSalle’s
invariance principle [26].

The global stability of endemic equilibrium point is obtained by
the sign of the first derivative of the Lyapunov function. Next, we will
discuss the curvature by the sign of second derivative of the Lyapunov
function.

d’U d 1dV; dV, dV;
= ala e rey)
d F(S*)\dS E*\dE
T < F(S)) +(1_f)ﬁ]

ra(1- )G el )%
(0 s (=Sl (E 4 (-5 )]

Based on the derivation rules for compound function, we can
know

n_ F(S)U + 5A) ’ o
- e S = P +54) - '
gr = ESOUT 0D o psyt’ + 64 = (u + 0)E,

S(1+aS)
"=(0-poE —(u+x+8&A, I'"=poE +xA —(u+q+yI.

Then, we can deduce that

d’U _ F(SHF'(s) o, _FsM
arr F2(s) S <1 F(S) )
F(S)I+64) ¢ ) )
[ ires S CEea +6A)—/4S]

(5 e (-5)
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[F(S)(I +06A)
S +as)

F(S*)5A* +

S+ FS)UI' +6A") = (u + o-)E’]

F(SHI* *
pO'E*+KA*K AT\
(1 - p)cE* (X)
F(S*)I* (I_’)Zl*
poE* + Kk A*

+ A*

F(S*I*
—_—K
poE* + kA* (1 A* )
(I - p)oE*
x [(1 —PCE — (4K + f:)A’]
F(S*I*
po E* + k A*

F(S*)6A* +

+

(1—1*) E'+xA - '
T poE" +k (u+q+nI|.

Next, we substitute the derivative formula of S’, E’, A’, I’ into the
above equality. For convenience, we can put together positive and
negative part and rewrite the above equality as follows

dU

=0 Q5.
a2 117~ %412

2
Therefore, if 2, > 25, Z—g > 0 means that the Lyapunov function U
t

2

has a local minimum value. However, if Q,; < Q,,, % < 0 suggests

that the Lyapuznov function U has a local maximum value. While if
d-U

e 0 implies that there is an endemic equilibrium

Q= Qp,
point.

Data fitting and sensitivity analysis
Data fitting

In the following part, we will fit the data of the cumulative con-
firmed cases of COVID-19 in New York City by Markov-Chain Monte-
Carlo(MCMC) simulations. Under the ongoing COVID-19 pandemic,
responses and suggestions regarding the mask use have varied greatly
by the public. There has been a major change about the government’s
response to COVID-19 in NYGC, i.e., the government urged the public
to stay at home on March 20, 2020, and announced the gradual re-
opening since July 7, 2020, and then the US CDC announced governors
to be prepared for COVID-19 vaccine distribution by 1st November,
2020 [29]. Based on the policies, we collected the data about the
number of daily and cumulative confirmed cases of New York City from
March 26 to October 31, 2020 from the Johns Hopkins University [6].
Hence, the transmission of COVID-19 in NYC can be divided into three
stages based on the government’s different policies. The first stage
is from March 20 to April 03, 2020, due to the shortage of medical
resources, especially in the supply of masks, there are not enough masks
for ordinary people, the percentage of people wearing masks was very
low. The second stage is from April 04 to June 07, 2020, the proportion
of people wearing masks has increased relatively and most people are
quarantined at home. The third stage is from June 08 to October 31,
2020, the society is reopening and the contact between people became
frequent. We will simulate the daily and cumulative confirmed cases
of New York City for the period from March 20 to October 31, 2020
by using model (1). Here, C(r) represents the cumulative number of
cases,
acm _ poE@) + KAQY).

dt
We assume and calculate some parameters apart from S, « and «, which
are showed in Table 2. The total number of population in New York
City is 8804190 [30]. The initial values are given by C(0) = 10532,
S(0) = 8763090, E(0) = 16000, A0) = 7300, I(0) = 8000, Q(0) =
800, R(0) = 9000 [6,30]. E(0), A(0), I(0) are estimated by the fitting.
In the early stage of the epidemic, few people in the public wear
masks in the liberal and democratic society of the United States and
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Table 2 Table 3

Estimated parameters values with respect to COVID-19 cases. Parameter estimation for f , x and a with the method of MCMC.
Variables Likely range Default value Reference Stage Parameter Mean Standard MC error Geweke
A 300 [30] First p 0.0748 0.000246 7.72e-05 0.9922
u 0.00002245 day~! [30]1 K 0.3616 0.036643 0.0011 0.9791
n 0-1 0.5 [17] Second a 0.2813 0.0007556 1.4597e-05 0.9996
1) 0.1-0.6 0.25 [7,13,31] Third p 0.1184 0.000878 1.528e-05 0.9989
o 1/7-1/4.1 days 1/5.2 day! [32]
P 0.15-0.7 0.5 [7,13,31]
£ 1/14-1/3 day™! 1/7 day™! [7,331
q 0.02-0.1 0.075 day! [31,33]
y 1/30-1/3 day~! 1/9 day~! [7,331
m 1/30-1/3 day™! 1/14 day! [7,33] Table 4

we suppose there were no intervention measures. The protective effect
of wearing masks on the disease has been controversial, and people
who wear masks are regarded as disseminators of the virus. Some
people are afraid of wearing masks for fear of opposition. Steffen [7]
derived the relationship between mask coverage and the transmis-
sion rate is similarly linear, and found that masks are useful with
respect to both preventing disease in healthy person and asymptomatic
infection.

The coverage rate of mask use is about 10 percent of the population
in the early stage of the USA State according to the survey from the
website [34]. In order to estimate the value of parameter f and «,
the effective coverage rate of wearing masks « is supposed 0.1 in the
first stage. Next we make the Latin Hypercube Sampling and MCMC
simulations based on the algorithm similar to research [35-37]. Using
10000 times simulation, we can receive the parameter value for g and
k with MCMC chain in Fig. 3. Then the mean value, the standard de-
viation, MCMC error and Geweke for parameter # and x are illustrated
in Table 3. It is easy to see that the Markov-chain of parameters  and
x are converged from Fig. 3. The US CDC advised the public to wear
masks on 03 April, 2020 [7] and medical resources were relatively
abundant, many people began to wear masks in public. In order to
estimate the effective coverage rate of wearing masks by the public in
the second stage, namely the value of parameter a, other parameters are
the same as the first stage. We still apply the Latin Hypercube Sampling
and MCMC simulation to estimate it and can acquire the parameter
value of « with Markov chain in Fig. 4. The mean value, the standard
deviation, MCMC error and Geweke for parameter « is demonstrated
in Table 3. After gradual reopening since June 7, 2020, the contact
became frequent in the public and the transmission rate increased. So
as to estimate the transmission rate g, we still utilize the MCMC method
to calculate it. The Markov chain of parameter § of the third stage is
showed in Fig. 5, and the mean value, the standard deviation, MCMC
error and Geweke for parameter f§ are presented in Table 3. Cumulative
infection cases, daily new infected cases predicted and comparison with
the confirmed cases for the first stage, second stage and third stage
are demonstrated in Fig. 6(a) (b) (c), and which also exhibit the 95%
percent interval and the median of these simulation outputs. It can be
observed that the cumulative infected cases predicted by model (1) are
nearly agreement with the notifiable reported cases. The red circles
show the number of actual confirmed cases and the blue solid curve
indicates the predicted actual confirmed cases of the model. The red
solid curve expresses the number of new daily confirmed cases, the blue
dotted curve represents the predicted daily new cases of the model.
Based on the fitting result, we can roughly estimate the mean effective
reproduction number R, = 1.822 in the first stage, which means that
COVID-19 will become an endemic in New York City without any
further control measures in the first stage. Nevertheless, the effective
reproduction number R, = 0.6483 in the second stage, R, = 1.024 in
the third stage. This means that the enlarging use of masks and home
quarantine in the second stage played an important role in controlling
the spread of COVID-19 in New York City. With the gradual reopening

10

Partial rank correlation coefficients (PRCC) of R, in three

stages.

Parameter PRCC of the first stage/ P-value of the first stage/
second stage/third stage second stage/third stage

a —0.8577/-0.9706/—-0.9041 0/0

p 0.9189/0.8328/0.9828 0/0

c 0.0374/0.02922/0.0443 0.2396/0.3581/0.1634

) 0.3038/0.2235/0.1181 0/0/0.0002

p 0.6681/0.4797/0.5353 0/0/0

& —0.1621/-0.0922/-0.2952 0/0.0036/0

K 0.1797/0.1236/0.02145 0/0/0.5001/

q —0.6284/-0.4791/-0.3009 0/0/0

n —0.9151/-0.8316/-0.5918 0/0/0

7 —0.6102/-0.4452/-0.2463 0/0/0

in the third stage, the spread of COVID-19 cannot be restrained by
wearing masks alone. A combination of vaccine and other control
measures is required.

Sensitivity analysis

Since most parameters used in above simulation are uncertain, the
uncertainty and sensitivity analysis of these parameters are required to
find out the decisive parameters of R, and to further verify the correct-
ness of the model. The PRCC-based sensitivity analysis evaluates the
influence of parameters on the response function of basic reproduction
number R,,. Here, PRCC values of some parameters are given based on
Latin Hypercube Sampling [37]. We take the sample size N = 10000,
in addition to A, u, all parameters as the input variables, the value of
R, as output variables. We assume that all parameters are uniformly
distributed and the significant level is selected as 0.01. If P-value is
smaller than 0.01, which is considered significant. The partial rank
correlation coefficients about R, in the first and second stage were
calculated in Table 4. Fig. 7 (a) shows the PRCC histogram of some
parameters about R, in the first stage with a = 0.1, Fig. 7(b) illustrates
the PRCC histogram about R, in the second stage with « = 0.281,
and Fig. 7(c) demonstrates the PRCC histogram about R, in the third
stage with f = 0.1184. It can be observed that the parameter ¢ is not
sensitive in three stages, while « is sensitive in the front two stages, but
not sensitive in the third stage. The transmission rate g, the effective
coverage rate of mask use «, the rate of keeping social distance # and
the admission rate g have significant effect on the basic reproduction
number R,. These parameters which can typically be influenced by the
control measures. The results suggest that the most relevant factors in
COVID-19 transmission and in the elevation of the number of infected
cases are the protective effect and the proportion of mask use.

To ascertain the dependence of R, on controllable parameters
B, a, 8, p, q, k, n, vy in three stages, we take the parameter values as
in Tables 2 and 3. By changing two parameters of R, and fixing other
parameters, Figs. 8-10 show the contour plots of R, with respect to
p and a, p and 6, k and ¢, y and 7 in three stages. It indicates that
increasing the effective coverage rate of wearing masks «, recovery
rate of symptomatic infected individuals y, the rate of keeping social
distance n can stem the transmission of COVID-19 in three stages.
Nevertheless, reducing the transmission rate #, progression rate p from
E(t) to A(t) and progression rate k from A(f) to I(¢) also can control
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Fig. 8. Contour plot of R, in the first stage. (a) Contour plot of R, varies § and a. (b) Contour plot of R, varies § and p. (c) Contour plot of R, varies ¢ and «. (d) Contour plot

of R, varies n and y.

the spread of COVID-19 in all the stages. In addition, we discover that
enlarging the proportion of mask use is more effective than increasing
the proportion of keeping social distance in controlling the transmission
of COVID-19 in New York City. It still provides new insights into
preventing the spread of COVID-19 in the real world.

The impact of mask use on the spread of COVID-19

Herein, our focus is to investigate the impact of masks on the spread
of COVID-19 in this segment. Furthermore, we illustrated the variation
of R, with respect to the effective coverage of using face masks « and
observed that R, decreases rapidly with increase the value of a and
a exceed a certain value a, = 0.182, R, becomes smaller than 1 from
Fig. 11(a). Thus, increasing the coverage of mask use at the beginning
spread of the disease is more effective in controlling the disease. We
can obtain the mean value of the basic reproduction number in the first
stage of NYC is R, = 1.822, which means the first stage is very serious
in NYC, although confirmed cases are rare. The epidemic would rapidly
break out if no intervention was taken. From Fig. 11(b) we can conclude
if the effective coverage rate of mask use increased to a = 0.2 before
the US Centers for CDC recommending public wear masks, the number
of confirmed cases will fall by 25,000 up to 03 April, 2020. It can be
seen that the greater coverage rate of mask use in NYC, cumulative
confirmed cases will be decreased quickly and the smaller final scale
form Fig. 11 (c,d). If public keep the effective rate of wearing masks
at 0.14 in the second, the cumulative number of cases will increase 4
times and reach 1.05 million up to 07 June, 2020. We can obtain the
mean value of the basic reproduction number in the second stage of
NYC is Ry, = 0.6483. If the effective coverage of mask use in public

11

reaches 50% at the early stage of disease transmission, cumulative
confirmed cases will be reduced from 71,178 to about 35,000 up to
03 April, 2020. If mask coverage stays at this level in the second, the
cumulative confirmed cases will be cut off 30% in the second stage, and
reduced from 0.201 million to 0.145 million up to 07 June, 2020 from
Fig. 11(c). However, when the effective coverage rate of masks reaches
a certain level « = 0.5, increasing the value of a, the benefits are not
obvious compared to the cost of wasting scale medical resources. This
means that other control measures are needed to contain the disease.
If the effective rate of mask use is reduced to 0.2 after reopening, the
number of cumulative infected cases will expand 8 times and break
through 2 million on 31 October, 2020 from Fig. 11(d). Based on
the fitting result, we can roughly calculate the effective reproduction
number R, = 1.024 in the third stage. From the epidemiological point
of view, the disease will break out in the long run. Therefore, multiple
control measures are needed to stem the spread of COVID-19 in New
York City.

Theory of validation

Finally, we will illustrate our theoretical results of model (1) by
numerical simulations. Most of the parameter values for those sim-
ulations are selected based on above simulations and each of the
equilibria are simulated, respectively. If we take « = 0.281, = 0.075,
k 0.361, other parameter values are the same as the values in
Table 2, then we obtain R, = 0.6483 < 1. We can derive that disease-
free equilibrium P*(13363028,0,0,0,0) is globally asymptotically stable
from Theorem 1. The simulation results in Fig. 12(a) demonstrate that
the exposed, asymptomatic, symptomatic, quarantined in the hospital
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and removed individuals all die out. When « 0.01, B 0.045,
and the other parameters values are the same as above simulation,
then R, 1.093. We can conclude that the endemic equilibrium
point P*(107, 1560, 298, 1383, 1452, 13358 000) of model (1) is globally
asymptotically stable from Theorem 3, and we observe that they all

maintain the endemic level from Fig. 12(b).

Discussion and conclusion

An SEAIQR epidemic model about COVID-19 transmission is formu-
lated in this work. The basic reproduction number, R, of the model is
defined and the explicit formula is given upon. A threshold result is
obtained: the infectious disease will die out if R < 1, and the endemic
equilibrium point of the model is globally asymptotically stable if R, >
1.

Since the accumulative confirmed cases of COVID-19 are rising day
by day, the prediction of infected cases is of significant importance
for health care arrangements. Since the protective effect of wearing
masks on the disease has been controversial in USA, few people in
the public wear masks in the liberal and democratic society of the US.
There are some experimental researches suggest that mask use may be
useful intervention strategy in controlling respiratory infectious disease
under coughing conditions [11-13]. Cui eta [38] adopted a SEIR model
to investigate the intervention strategy he influence of wearing N95
face masks in reducing the spread of influenza HIN1, and conclude
that mask use is an effective method in controlling the transmission of
influenza H1N1. Steffen E et al. [7] develop a compartmental model
to assess the impact of mask use by the general and the potential
high value of public use of masks in reducing the transmission and the
burden of the pandemic.

Results in Physics 34 (2022) 105224

Second stage

0.5

0.45
0.4
0.35
0.3

0.25

0.6 0.65

Second stage

0.3 15

0.25
0.2
0.15
0.1

0.05

0.3 0.35 0.4 0.45 0.5 0.55 0.6

(b) Contour plot of R, varies 6 and p. (c) Contour plot of R, varies g and «. (d) Contour

12

In this work, we devised an SEAIQR model to investigate the impact
of coverage rate of mask use on the COVID-19 transmission, and fit
the accumulative confirmed cases of COVID-19 in New York City. The
crucial model parameters have been estimated by the Latin Hypercube
Sampling and the MCMC method. We also made the sensitivity analysis
of the key parameters, and obtained that the transmission rate g, the
coverage rate of mask use a and the effectiveness of keeping social
distance » have significant effect on the basic reproduction number R
from the PRCC values of parameters. From the variation of R, with
respect to the effective coverage of mask use a, we can observe that
a exceed a certain value @, = 0.182, R, becomes smaller than 1 in
the second stage. Based on mathematical analysis and data fitting, we
obtain the mean value of effective basic reproduction number of the
first stage from March 20 to April 03 2020 in NYC is R, 1.822.
Wilder et al. obtain that the basic reproduction number R, in the New
York City is 3.2 (95% CI: 2.71 to 3.93) [19]. Zou et al. revealed that
the basic reproduction number R, in the US and New York state are
2.5 and 3.6 respectively [39] and Peirlinck et al. 5.3 (95% CIL: 4.35
to 6.25) in the New York City [40]. Gunzler et al. concluded that the
basic reproduction numbers R, in the New York City are 4.3 (95% CI:
4.2 to 4.4) on March 17, 1.39 (95% CI: 1.36 to 1.42) on March 24
and 1.21 (95% CI: 1.17 to 1.26) on April 01, respectively [41]. Our
results about the value of R, keep consistent with research [17,19,41],
the effective reproduction number is closely related to time. We obtain
that the greater coverage rate of mask use in New York City, cumulative
confirmed cases will be decreased quickly. However, when the effective
coverage of masks reaches a certain level « = 0.6, increase the effective
coverage rate «, the benefits are not obvious compared to the cost of
wasting scale medical resources. If the effective coverage of mask use
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in public reaches 0.5 in the first stage, cumulative confirmed cases will
be reduced about 50% and the outbreak will eventually be contained
under existing control measures in long time. Hundreds of thousands of
infected people could be decreased if masks were more widely used in
the early stages and the epidemic will be less severe. Here, parameter
a is equal to the coverage rate of mask use products the efficacy of
mask. The efficacy of mask use to prevent infection is about 66%-93%
based on a research about the effectiveness of mask use for COVID-
19 [42]. If we suppose efficacy of mask use is 70%, we can obtain only
the coverage rate reaches to 85.7% can a reaches 60%. In practice,
it is hard to reach the rate of people wearing masks. Shen estimated
the proportion of people who always wear a face mask in New York is
76.6% based on about 250,000 interviews conducted by Dynata from
02 July to 14 July, 2020 from The New York Times [8,43]. Moreover,
the coverage rate of wearing mask is varying over time. The coverage
rate of mask use by the public is very low in the early stage of the
epidemic. As the epidemic became more severe, the WHO suggested
the public wearing masks, people began to wear masks gradually. The
parameter critical value @, we estimate is an average value from 04
April to 07 June. Therefore, it is very difficult to eliminate the epidemic
in New York City in a short time.

With the relieving of lockdown in New York City, people began to
go back to work on June 8 [8]. Under these circumstances, the contacts
between people are relatively frequent, and thus it will increase the risk
of transmission. In this case, COVID-19 continued to spread in New
York City. To control the epidemic, it is still necessary to decrease
the contact number, increase the coverage rate of masks use and
take personal protection in public places. To achieve this goal, people
should make rather less contacts with infected individuals, keep social
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distance and minimize unnecessary outings. Infected cases should be
diagnosed and treated in hospital as soon as possible to ensure that
infected individuals do not spread the disease further, increase the
coverage rate of mask use and take personal protection in public places.
Meanwhile, the immunization is also necessary. These strategies, if
successful, would control the COVID-19 in New York city in the near
future. Meanwhile, spatial effects should be included in the dynamical
models from theoretical perspective of view [44-46].
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